Genetic Testing for Alzheimer’s Disease

Robert Pokorski, MD, MBA

April 27, 2006
Anti-trust statement

General Re Life Corporation adheres to antitrust laws. The information provided in this lecture is intended to advance the knowledge and improve the risk assessment skills of the participants. Under no circumstances shall this lecture be used as a forum for the pricing of specific products or for determining how they are marketed.

Copyright

The material contained in this presentation has been prepared solely for informational purposes by General Re Life Corporation (“GRL”). The material is based on sources believed to be reliable and/or from proprietary data developed by GRL, but we do not represent as to its accuracy or its completeness. This document and its contents are proprietary to GRL. Neither this document nor its contents may be copied or reproduced in any manner without the express written consent of GRL.

Copyright © 2006 General Re Life Corporation. All rights reserved.
Early Testing for Alzheimer’s Disease

- Genetics / APOE
- REVEAL Study
- Underwriting
- Managing the risk
Introduction

- Alois Alzheimer reported Alzheimer’s disease (AD) in 50-year-old woman (1907)
- AD causes 2/3 of dementia
- 7.1% of all U.S. deaths due to AD in 1995
 - Roughly same as cerebrovascular disease (3rd cause of death)
- 2 types
 - Early-onset (familial)- 2% of AD
 - Late-onset (nonfamilial, sporadic, APOE-related)- 98% of AD
Early-onset (familial)

- Autosomal dominant → ½ of children affected
- Age at onset
 - 40s, 50s, sometimes even 20s
 - Never after 65
- Caused by 3 genes that disrupt amyloid brain metabolism
 - APP (amyloid precursor protein)
 - Presenilin 1
 - Presenilin 2
Late-onset (nonfamilial, sporadic, APOE-related)

- The **gene** APOE produces the **lipoprotein** apolipoprotein E (APOE)
- APOE primary component of very low density lipoproteins (VLDL) which carry cholesterol from blood to liver
- APOE important for cholesterol transport within brain
Apolipoprotein E (APOE) genotypes

• Genotype- Three alleles (versions) of APOE gene
 – e2- Lower AD risk
 – e3- Average AD risk
 – e4- Higher AD risk

• APOE genotyping not routine, but many patients request it ($299)

Frequency of APOE genotypes in U.S. and relative risk of AD for controls vs. AD cases*

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Controls (%)</th>
<th>AD (%)</th>
<th>Relative risk (C / B)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>e2/e2</td>
<td>0.8</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>e2/e3</td>
<td>12.7</td>
<td>4.8</td>
<td>0.4</td>
</tr>
<tr>
<td>e2/e4</td>
<td>2.6</td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>e3/e3</td>
<td>60.9</td>
<td>36.4</td>
<td>0.6</td>
</tr>
<tr>
<td>e3/e4</td>
<td>21.3</td>
<td>41.4</td>
<td>1.9</td>
</tr>
<tr>
<td>e4/e4</td>
<td>1.8</td>
<td>14.8</td>
<td>8.2</td>
</tr>
<tr>
<td>No e4</td>
<td>74.4</td>
<td>41.4</td>
<td>0.6</td>
</tr>
<tr>
<td>1 or 2 e4</td>
<td>25.7</td>
<td>58.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

† e.g., 1.8% of control group e4/e4, but 14.8% of AD cases e4/e4 (14.8/1.8 = 8.2).
APOE affects age at onset

- Age at which 50% have AD
 - e4/e4 - Age 68
 - e3e/4 - Age 76
 - e3/e3 - Age 84

- By age 80, percent with AD
 - e4/e4 - 91%
 - e3/e4 - 48%
 - No e4 - 20%

- e2/e2 overly represented among centenarians

- No e4/4 has reached 90 without AD
Causes of Alzheimer’s disease

Genetic (definite)
- APP
- Presenilin 1
- Presenilin 2
- Down’s syndrome
- Other genes

Nongenetic (possible)
- Toxins
- Viruses
- Prions
- Low education
- Head trauma

Most common pathway: Environment + genes (APOE, others) + aging
Pathophysiology

Gene mutation → Increased brain production of amyloid β peptide and/or defective amyloid β peptide

Amyloid β peptide accumulates as plaques that disrupt neurotransmission between neurons

Neurons malfunction / die

Dementia
Life expectancy after initial clinical diagnosis decreases with older age

<table>
<thead>
<tr>
<th></th>
<th>Age 70</th>
<th>Age 80</th>
<th>Age 90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75%</td>
<td>50%</td>
<td>25%</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S population</td>
<td>21.3</td>
<td>15.7</td>
<td>9.5</td>
</tr>
<tr>
<td>Alzheimer’s</td>
<td>12.3</td>
<td>8.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S population</td>
<td>18.0</td>
<td>12.4</td>
<td>6.7</td>
</tr>
<tr>
<td>Alzheimer’s</td>
<td>5.1</td>
<td>4.4</td>
<td>3.1</td>
</tr>
</tbody>
</table>

† Life expectancy quartile at initial clinical diagnosis can be estimated by factors such as cognitive status (e.g., Mini-Mental State Exam), comorbidity (e.g., cardiovascular disease, cancer, frailty), and instrumental activities of daily living.
Treatment not good, will improve

- May slow progression for 6-12 months (some better than others)
 - Razadyne® (galantamine)-
 Anticholinergic
 - Exelon® (rivastigmine)-
 Anticholinergic
 - Aricept® (donepezil)-
 Anticholinergic
 - Cognex® (tacrine)-
 Anticholinergic
 - Namenda® (memantine)-
 Glutamate regulator
 - Evista® (raloxifene)- Selective estrogen receptor blocker

- Ineffective
 - Vitamin E (NEJM 2005;352:2379-88)
 - Statins (Arch Neurol 2005:62:1047-51)

- Experimental (lab mice)
 - Amyloid β peptide vaccine for prevention / treatment of existing AD
Early Testing for Alzheimer’s Disease

• Genetics / APOE
• REVEAL study
• Underwriting
• Managing the risk
Genetic Testing For Alzheimer’s Disease And Its Impact On Insurance Purchasing Behavior

Widespread genetic testing for Alzheimer’s susceptibility could present dilemmas for long-term care insurance

Health Affairs 2005 (March);24:483-90
REVEAL (Risk Evaluation and Education for Alzheimer’s Disease) Study

- Randomized controlled trial to evaluate impact of genetic education (learning APOE genotype) on **148 adult children of AD patients**

- **Control group** (46 subjects)- Told of AD risk based on age / gender / family history

- **Intervention group** (102 subjects)- Told of AD risk based on age / gender / family history / **APOE genotype**
Subjects with family history of AD more likely to have already purchased LTC

- Percentage with insurance at beginning of study
 - Health - 97%
 - Life - 78%
 - Disability - 40%
 - LTC - 20%
- In U.S., 7% of aged 65+ have LTC insurance, compared to 20% baseline in REVEAL
- *Even before APOE known, subjects with family history of AD were 3 times more likely to have already purchased LTC*
 - Other possible reasons for greater baseline LTC coverage were higher income / education / socioeconomic status
Results

Percentage of subjects who changed / thought about changing insurance coverage in year after learning of AD risk based on age, sex, family history, and APOE

<table>
<thead>
<tr>
<th>Type of Insurance</th>
<th>Percent reporting a change</th>
<th>Percent thinking about a change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No APOE disclosure (n = 46)</td>
<td>E4 Negative (n = 54)</td>
</tr>
<tr>
<td>Health</td>
<td>6.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Life</td>
<td>6.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Disability</td>
<td>4.4</td>
<td>3.7</td>
</tr>
<tr>
<td>LTC</td>
<td>4.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Pokorski RJ, et al. Health Affairs 2005 (March);24:483-90. In all cases, change meant “increase” coverage.

- **Life**
 - e4 positive more likely to think of changing coverage

- **LTC**
 - e4 positive much more likely to change / think of changing coverage, e4 negative less likely to change
AD “perfect storm” for LTC antiselection

- “Perfect storm”
 - High likelihood of needing care
 - APOE gives significant (but incomplete) predictive information
 - LTC private market in U.S.
- Overall, e4 positive subjects **5.8 times** more likely to increase LTC coverage
- Authors suggest **LTC purchase might increase further with older age**, i.e., no perceived need to buy LTC at age 52 (average age of study subjects)
Early Testing for Alzheimer’s Disease

- Genetics / APOE
- REVEAL study
- **Underwriting**
- Managing the risk
Incidence rate of AD doubles every 5 years

- Age 62: 1 new case per 1000 people
- Age 79: 1 new case per 100 people
- Age 94: 1 new case per 10 people
- Age 105: Incidence rate equals mortality rate

Are underwriting requirements, especially cognitive testing, in line with AD incidence rates?
Family history (FH)

- 25% of late-onset AD have close relative with AD
- **Ask older applicants about FH**
 - “At what age was condition **diagnosed** (e.g., AD, heart disease, cancer),” not “At what age did **death** occur from condition”
- FH important if
 - Any AD under age 60
 - AD in two or more elderly parents, siblings, aunts, uncles
Likelihood of AD varies with age, family history, APOE

Prevalence of Alzheimer's disease, males

- Annual incidence of AD between ages 65 and 80
 - Population: 0.3%
 - First degree relative: 0.8%
 - APOE e3/e4: 1.6%

Attending physician’s statement often not helpful

Physician usually does not know about mild AD

Physician may not record AD diagnosis in records

“Potential harm of early identification of dementia relates to repercussions of the label of cognitive impairment, including inability to obtain life or health insurance” (J Am Geriatr Soc 2000;48:1430-34)
Memory loss = AD until proven otherwise

If memory loss

• **Full evaluation by specialist**

 – Cognitive tests- Borderline low score often / usually = early AD

 – MRI, blood, etc., for other impairments- Depression, brain tumor, multi-infarct dementia, systemic illness

• **Time (12 months, minimum)** for physician to follow patient, repeat tests (mild cognitive impairment → AD at 10%-15% per year)
Applicants with known AD

- Suicide risk- Claims within contestable period might be “accidental death”
- Moral risk if beneficiary initiates insurance purchase
- Legal risk- Often cannot contest misrepresentation (applicant forgot past medical history)
- Risk classification difficult because great variation in survival data in medical literature
AD major concern for LTC & products with LTC rider … even without APOE issue

• AD already most common / most costly / longest LTC claim

• Dementia definition weak
 – Easy to misrepresent “Significant impairment on cognitive test”
 – Easy to misrepresent “Need for continuous supervision”

• REVEAL
 – People with FH of AD 3 times more likely to already have LTC
 – e4 positive subjects 5.8 times more likely to increase LTC coverage
AD incidence will increase

- Growing emphasis on screening for prevention / early treatment (when better treatment becomes available)

- **Routine** screening in future for people with early memory loss, family history of AD, “worried well,” healthy elderly
 - www.medafie.com
 - Free online memory test for early identification of AD
 - Suggested frequency: Age 50-65, each year; 65+, every 3 months
Tests to screen for AD

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropsychological tests</td>
<td>Delayed word recall, other</td>
</tr>
<tr>
<td>Brain scans</td>
<td>1. MRI - Small hippocampus (memory)</td>
</tr>
<tr>
<td></td>
<td>2. PET (positron emission tomography) scan - Slower glucose metabolism</td>
</tr>
<tr>
<td>Electroencephalograph (EEG)</td>
<td>Abnormal pattern predicts AD</td>
</tr>
<tr>
<td>Scratch and sniff test</td>
<td>Abnormal with AD (strawberry, lemon, smoke, lilac, leather), online purchase</td>
</tr>
<tr>
<td>Genetic predisposition</td>
<td>Family history, apolipoprotein e4</td>
</tr>
<tr>
<td>Mathematical models</td>
<td>Combine data from above to predict AD</td>
</tr>
</tbody>
</table>
Claims scenarios when AD incidence increases

What happens if incidence of AD increases in 2010 due to routine screening?

- No breakthrough in treatment
 - ↑ number of claims, ↑ claim duration

- Breakthrough in treatment
 - ↑ number of claims, ↑ claim duration
 - ↑ number of claims, ↓ claim duration
 - ↓ number of claims, ↑ claim duration
 - ↓ number of claims, ↓ claim duration

What happens if AD cured, controlled, or prevented in 2025?

- ↓ ↓ ↓ in number, duration of claims
What insurers can do when / before AD incidence increases

1. More cognitive tests based on age, amount at risk, cost / benefit analysis
 - e.g., age 60- $500,000+
 - e.g., age 65- $250,000+
2. Use family history to modify risk
3. Physician’s statement often won’t reveal existing AD

Underwriting

Claims

Pricing

Product design

More restrictive benefit criteria

Increase price

Reduce risk per contract provisions
Early Testing for Alzheimer’s Disease

- Genetics / APOE
- REVEAL study
- Underwriting
 - Managing the risk
AD already very important cause of claim

Alzheimer's disease as a cause (%) of LTC Claims, by issue year

<table>
<thead>
<tr>
<th>Year Interval</th>
<th>Count</th>
<th>Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984-1991</td>
<td>15%</td>
<td>36%</td>
</tr>
<tr>
<td>1992-2001</td>
<td>23%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Source: SOA LTC Intercompany Experience Study
Managing the risk

• Pricing
 – Antiselection certain → size of impact uncertain, but likely significant
 – Low market penetration compounds antiselection

Product benefits
 – Higher / lower AD risks likely to choose higher / lower benefits
 – Continue to offer wide choice of benefit options?
 – Continue to offer unlimited lifetime benefit?
 – Offer new benefits for AD prevention / treatment?

• Product wording
 – Claim trigger defensible against claims for pre-symptomatic / mild AD?
Managing the risk

• Marketing
 – Will agents / financial planners recommend APOE testing?
 – Will emphasizing AD in marketing attract more applicants with positive family history / e4?
 – Will AD tests encourage existing insureds to test for AD?
 • Cancel policy if negative?
 • Upgrade to “better” policy if positive?

• Claims
 – Pay only on objective criteria in contract wording?
 – Fear of lawsuits → pay on AD diagnosis / early dementia?
Managing the risk

• New underwriting questions
 – Family history of AD?
 – **Had any test indicating higher likelihood of developing AD?**

• Regulatory
 – Most states allow use of genetic information for LTC, a few do not

• Public Relations
 – Fair / unfair to use genetic information? Only a risk, not an impairment? Not my fault?
 – Fair that low risk subsidize high risk insureds?
 – Private insurance optional → vulnerable to antiselection
 – Public programs that mandate participation less vulnerable
Why insurance companies do dumb things*

• Denial of problem

• Tension between short- and long term goals
 – e.g., need to meet quarterly sales targets greater than worry about long term risks

* Crompton, Robert B. Why insurance companies do dumb things. Contingencies Nov/Dec 2003, p. 8-12
Why insurance companies do dumb things

- Antiselection not a problem
- Don’t need more cognitive tests
- Underwriting protects us
- Claims people protect us
- Treatment will decrease claims

We’ve priced for this
- We’ll sort this out next quarter
- We can always raise rates if mistakes in product design
- Market share our #1 goal (same as many former LTC insurers)
- I’ll be long retired by then

Do any of these beliefs apply to LTC insurance?
Genetic Testing for Alzheimer’s Disease

Robert Pokorski, MD, MBA